Chemical tagging of kinematic substructures in the solar neighborhood with LAMOST

Jingkun Zhao
Collaborator: Gang Zhao, Xilong Liang, Jiajun Zhang, Jianrong Shi, Yuqin Chen, Haining Li, Wako Aoki, Miho Ishigaki, Takuma Suda,

NAOC
Outline

- Disentangling HR1614 branch with LAMOST MRS
- Evolution of main moving groups in the solar neighborhood with LAMOST LRS
- A new Moving Group in UV and elemental abundance space
Chemical abundance will help us to know the origin of those moving groups

Kinematic over-densities:
Part of a much more complicated structures seen as arches and ridges

Caused by spiral arms or a phase-mixing due to a past merger event
- First advocated by Eggen (1978);
- Smith (1983) using DDO photometry showed enhanced cyanogen bands in Eggen (1978) sample stars
- Feltzing & Holmberg (2000)
 - there is a distinct stellar population of metal rich stars centered at $U = 10$ km/s, $V = -60$ km/s and tilted in the UV plane
De Silva et al. 2007: The only one true Moving Group in thin disk
18 member star candidates:
4: solar metallicities, 3 nonmembers or binaries
14: $[\text{Fe/H}] \geq 0.25 \text{dex}$ age=2Gyr age and abundance are very consistent
remnant of a dispersed star-forming event
• More member stars of HR1614 branch with LAMOST MRS
• Abundance pattern
• Formation mechanism
e_parallax/parallax < 20%
d < 500pc

Wavelet transform

Scale=3

Scale=4

Scale=5
-70 < V < -60 & -20 < U < 50
1200 < Jz < 1500 & 20 < J⊥ < 80

Bimodal distribution
Stellar parameters:

- Teff, logg, [Fe/H] from LAMOST pipeline
- Microturbulence: calibration from Teff and logg from Edvardsson et al. 1993

Linelist: Single line without clear mixing by the comparison of solar atlas

Spectral Fitting Method: Iteration with Levenberg-Marquardt technique (MPFIT idl code); Initial values: solar abundance
HR1614 Branch—Abundance
Linelist

<table>
<thead>
<tr>
<th>Wavelength</th>
<th>E.P.</th>
<th>logf</th>
<th>f6</th>
</tr>
</thead>
<tbody>
<tr>
<td>5105.549</td>
<td>1.39</td>
<td>-1.72</td>
<td>1.5</td>
</tr>
<tr>
<td>5204.522</td>
<td>0.94</td>
<td>-0.95</td>
<td>1.6</td>
</tr>
<tr>
<td>5237.326</td>
<td>4.07</td>
<td>-1.89</td>
<td>2.5</td>
</tr>
<tr>
<td>5334.867</td>
<td>4.07</td>
<td>-1.89</td>
<td>2.5</td>
</tr>
</tbody>
</table>

blue arm

<table>
<thead>
<tr>
<th>Wavelength</th>
<th>E.P.</th>
<th>logf</th>
<th>f6</th>
</tr>
</thead>
<tbody>
<tr>
<td>6366.488</td>
<td>4.17</td>
<td>-1.05</td>
<td>1.5</td>
</tr>
<tr>
<td>6439.085</td>
<td>2.52</td>
<td>-0.05</td>
<td>1.5</td>
</tr>
<tr>
<td>6449.821</td>
<td>2.52</td>
<td>-0.62</td>
<td>1.5</td>
</tr>
<tr>
<td>6471.670</td>
<td>2.52</td>
<td>-0.88</td>
<td>0.8</td>
</tr>
<tr>
<td>6496.911</td>
<td>0.60</td>
<td>-0.07</td>
<td>3.0</td>
</tr>
<tr>
<td>6526.643</td>
<td>5.87</td>
<td>-1.55</td>
<td>1.5</td>
</tr>
<tr>
<td>6527.210</td>
<td>5.87</td>
<td>-1.26</td>
<td>1.5</td>
</tr>
<tr>
<td>6572.355</td>
<td>0.50</td>
<td>-3.98</td>
<td>1.5</td>
</tr>
<tr>
<td>6586.319</td>
<td>1.95</td>
<td>-2.95</td>
<td>1.5</td>
</tr>
<tr>
<td>6696.027</td>
<td>3.14</td>
<td>-1.65</td>
<td>1.5</td>
</tr>
<tr>
<td>6698.675</td>
<td>3.14</td>
<td>-1.95</td>
<td>2.5</td>
</tr>
<tr>
<td>6717.689</td>
<td>2.71</td>
<td>-0.39</td>
<td>2.5</td>
</tr>
<tr>
<td>6721.847</td>
<td>5.86</td>
<td>-1.19</td>
<td>1.5</td>
</tr>
<tr>
<td>6743.129</td>
<td>0.90</td>
<td>-1.76</td>
<td>1.5</td>
</tr>
<tr>
<td>6767.784</td>
<td>1.83</td>
<td>-1.89</td>
<td>2.5</td>
</tr>
<tr>
<td>6772.323</td>
<td>3.66</td>
<td>-1.07</td>
<td>2.5</td>
</tr>
</tbody>
</table>

Red arm
Initial tentative conclusion:
HR1614 branch includes two populations (A and B):
A. HR1614 moving group: $[\text{Fe/H}] > -0.2$
 remnants from an open cluster
B. $[\text{Fe/H}] < -0.2$
 Field stars clumped by perturbation
Evolution of moving groups

Sample: LAMOST DR5 dwarfs & distance < 0.5 kpc, SNRg > 50
Age: chromospheric activity

1. The Hercules branch is detected in subsamples with ages older than 2 Gyr.
2. Sirius, Coma and Hydes branch is well established in [0.2,0.5].
3. Branches might be formed by the combination of remnants of clusters, perturbation of bar, spiral arm and merge event.
New moving group in velocity and chemical plane

Sample: LAMOST DR5 Giants & Gaia 2; distance < 0.5 Kpc
Elemental abundance: AstroNN C N O Mg Al Si S Ca Ti Cl Mn Ni

astroNN: Leung & Bovy 2018
Liang et al. to be submitted
New moving group

Gray points: background stars
Blue points: clumped in spatial space
Green points: clumped in velocity space
Red points: clumped in both spatial and velocity space
New moving group
New moving group

Spatial position: close to Orion nebula
Origin: classical moving group
similar abundance
clumped in velocity and spatial space
THANKS