**National Astronomical Observatories** Center for Operation and Development of Guo Shoujing Telescope

# **Carbon stars from LAMOST DR4**

Collaborators: Ali Luo, Chang-de Du, Fang Zuo, Mengxin Wang, Li Qin, et al.

2017.02.19

# Outline

- Background
- **•** How to find carbon stars ?
- Spectra MK Classification
- Multiple-wavelength Data
- Compared with previous work



# Background

- Definition of carbon star
  - □ C/O > 1
  - Optical spectra: CH, C2 or CN band
  - □ Infrared spectra: SiC band
- Origins of carbon
  - Giants: from the third dredge-up of TP- AGB phase
  - Dwarfs: from their companion
- Why is carbon star rare ?
  - □ The short time scale of TP-AGB phase (a few hundred years)
  - Only third dredge-up can convect carbon to surface
  - Only strong dredge-up can produce carbon stars
- □ Why do we study carbon stars?
  - Play an important role in the nuclear synthesis process
    - □ Synthesize about half of elements heavier than iron by the s-process
    - Synthesize carbon by the triple-alpha process
  - Help us to understand the evolution of galaxies
  - As probes to investigate the dark matter halo, Galactic potential, dwarf galaxies or stellar streams.



# Background

Detection History

- □ Alksnis, A. et al. 2001, 10, 1 --- 6891 carbon stars
- Christlieb, N. et al. 2001, 375, 366 --- 403 FHLCs --- HES spectra

□ SDSS

- □ Margon, B., et al. 2002, 124, 1651 --- 39 FHLCs
- Downes, R., A., et al. 2004, 127, 2838 --- 251 FHLCs
- Green, P. 2013, 765, 12 --- 1220 FHLCs
- □ Si, J.M., et al. 2014, 57, 176 --- 260 carbon stars

#### LAMOST

- □ Si, J.M., et al. 2015, 15, 1671 --- 183 carbon stars
- □ Ji, W., et al. 2016, 226, 1 --- 894 carbon stars

#### □ DFBS

- Gigoyan, K.S., et al. 2012, 544, A95 --- 13 FHLCs
- □ Gigoyan, K.S., et al. 2014 --- 54 FHLCs
- □ Gigoyan, K.S., et al. 2015 --- 66 FHLCs

#### The process of finding carbon stars









**Research of Retrieval algorithms** 

- Six Machine Learning Algorithm Comparison
- Time Consuming of Key steps of Bagging TopPush Algorithm



- Bagging TopPush Algorithm + over one billion spectra
  - 2651 carbon stars from LAMOST DR4
  - □ 1415 of them are new findings
  - □ 17 carbon-enhanced metal-poor main sequence turn off stars
  - Examples of Spectral Binaries



Example of G-type carbon stars



#### Examples of emission line carbon stars



#### Examples of carbon-enhanced metal-poor main sequence turn off stars



#### Spectral MK Classification

- Classification Criteria
- **CJ** stars --- J index >= 4 (ApJ, 2009, 705, 1298)
- CH, CR, CN, and Ba stars --- artificial identification
- Classification Results
  - □ CH: 864
  - □ CR: 226
  - □ CJ: 400
    - □ CJ(N): 353
    - □ CJ(H): 41
    - □ CJ(R): 6
  - □ CN: 266
  - □ Ba: 719
  - □ Unknown: 164
  - □ Binary: 12 (No spectra type)

| Sub-type | Criteria                                                                                          |
|----------|---------------------------------------------------------------------------------------------------|
| C-H      | 1) Prominence of the secondary P-branch head near 4342 Å;                                         |
|          | 2) Strong G-band (CH band);                                                                       |
|          | 3) H $\beta$ and Ba II at 4554 Å are clearly noticeable;                                          |
|          | 4) H $\alpha$ and Ba II at 6496 Å are noticeable;                                                 |
|          | 5) Blend feature of Na I D1 and Na I D2 is not distinguishable;                                   |
|          | 6) Ca I at 4226 Å is marginally noticed.                                                          |
| C-R      | 1) Strong Ca I at 4226 Å;                                                                         |
|          | 2) Na I D1 and Na I D2 blended line have two distinct dips;                                       |
|          | 3) Weak H $\beta$ and Ba II at 4554 Å blended with atomic and molecular lines;                    |
|          | 4) Weak H $\alpha$ and Ba II at 6496 Å blended with the CN bands around 6500 Å.                   |
| C-N      | 1) No flux at $\lambda < 4400$ Å; some very late type C-N can be flat even at $\lambda < 5000$ Å; |
|          | 2) Strong Ba II at 6496 Å;                                                                        |
|          | 3) Weak H $\alpha$ .                                                                              |
| C-J      | 1) A high isotope ratio of <sup>13</sup> C to <sup>12</sup> C with j-index $\geq$ 4.              |
| Ba       | 1) Strong lines of s-process elements, particularly Ba II at 4554 Å and Sr II at 4077 Å.          |







李荫碧—973年会

CJ(H) and CJ(R) stars



李荫碧 — 973年会





# Finding carbon stars

#### Parameter Catalog for carbon stars of LAMOST DR4

- Designation
- Equatorial Coordinates
- □ Signal to Noise ratio
- PPMXL proper motion
- UCAC4 proper motion
- GALEX photometry
- Pan-STARRS photometry
- 2MASS photometry
- Wise photometry
- Flag\_new: new finding or not
- □ Flag\_type: a spectral binary, a G-type star, a emission line star, or not
- □ Spectra\_type: CH, CR, CJ, CN, and Ba

# Finding carbon stars

#### Parameter Catalog for 17 CEMP MSTO stars of LAMOST DR4

- Designation
- Equatorial Coordinates
- Signal to Noise ratio
- Atmospheric Parameters
- Radial Velocities
- PPMXL proper motion
- UCAC4 proper motion
- GALEX photometry
- Pan-STARRS photometry
- 2MASS photometry
- Wise photometry



- GALEX Ultraviolet Detections
  - □ 1099 detections
  - 26 FUV-detections --- likely have white dwarf star companions
  - □ 1098 NUV-detections

|                            | C     | 6       |       | 1       |
|----------------------------|-------|---------|-------|---------|
| Designation                | fuv   | fuv_err | nuv   | nuv_err |
|                            | (mag) | (mag)   | (mag) | (mag)   |
| LAMOST J005749.75+013835.2 | 22.14 | 0.10    | 21.99 | 0.16    |
| LAMOST J020726.72+453216.9 | 20.92 | 0.34    | 20.51 | 0.28    |
| LAMOST J050736.14+305149.6 | 21.71 | 0.53    | -999  | -999    |
| LAMOST J064654.93+443926.5 | 20.27 | 0.15    | 19.91 | 0.10    |
| LAMOST J073406.93+351345.5 | 22.56 | 0.33    | 17.54 | 0.02    |
| LAMOST J074743.32+173302.0 | 22.41 | 0.44    | 20.64 | 0.14    |
| LAMOST J083021.22+154319.6 | 23.08 | 0.28    | 22.21 | 0.17    |
| LAMOST J084906.99+462727.2 | 22.21 | 0.16    | 21.81 | 0.08    |
| LAMOST J091555.05+043115.6 | 21.53 | 0.32    | 20.42 | 0.18    |
| LAMOST J093450.24+022355.0 | 22.35 | 0.40    | 21.47 | 0.22    |
| LAMOST J094634.19+140521.7 | 24.01 | 0.30    | 20.10 | 0.02    |
| LAMOST J101110.08+285036.0 | 22.12 | 0.37    | 21.24 | 0.27    |
| LAMOST J101423.40+302200.3 | 25.20 | 0.25    | 21.07 | 0.01    |
| LAMOST J101946.87+252932.7 | 22.45 | 0.41    | 20.32 | 0.11    |
| LAMOST J115932.16+014326.9 | 22.54 | 0.50    | 20.90 | 0.18    |
| LAMOST J130359.18+050938.6 | 23.74 | 0.27    | 21.98 | 0.07    |
| LAMOST J130824.28+530224.4 | 23.03 | 0.20    | 22.42 | 0.13    |
| LAMOST J131525.84+062520.9 | 19.09 | 0.12    | 18.61 | 0.06    |
| LAMOST J133841.23+014523.7 | 22.89 | 0.26    | 21.79 | 0.15    |
| LAMOST J140953.08-061141.8 | 21.36 | 0.33    | 19.79 | 0.12    |
| LAMOST J142057.12-031953.2 | 19.09 | 0.13    | 18.66 | 0.06    |
| LAMOST J154903.86+033253.1 | 22.38 | 0.33    | 22.10 | 0.18    |
| LAMOST J164420.62+034506.6 | 19.75 | 0.12    | 19.59 | 0.08    |
| LAMOST J220255.21-010708.3 | 21.12 | 0.06    | 21.00 | 0.05    |

G-type stars: 0.3 <= (g - r) <= 0.8 and 3 <= (nuv - r) <= 7.5</li>
Ba stars: 0.3 <= (g - r) <= 1.2 and 7.5 <= (g - r) <= 11</li>





- Hot carbon stars:  $0 \le (g r) \le 1$  and  $0.2 \le (r i) \le 1.7$
- □ Cool CJ and CN stars:
  - Most of them: (r i) > 1.7
  - A small fraction of them: (g r) > 1.0 and  $(r i) \le 1.7$



- Hot carbon stars:  $-0.05 \le (r i) \le 0.65$  and  $0.05 \le (i z) \le 0.9$
- Cool CJ and CN stars:
  - Most of them: (i z) > 0.9
  - A small fraction of them: (r i) > 0.65 and  $(i z) \le 0.9$



- Hot carbon stars:  $-0.05 \le (z y) \le 0.7$  and  $-0.1 \le (i z) \le 0.4$
- Cool CJ and CN stars:
  - Most of them: (z y) > 0.7
  - A small fraction of them: (i z) > 0.4 and  $(i z) \le 0.7$



- Hot carbon stars are distinguished from cool CJ and CN stars:
  - $(z-y) \le -0.8 \times (y-J) + 1.45$
  - **Roughly criterion:**  $(y-J) \ge 1.45$



Hot carbon stars are distinguished from cool CJ and CN stars:
 (y−J) ≤ −3 × (J −H)+4.3
 Roughly criterion: (J − H) ≥ 0.93



- Hot carbon stars are distinguished from cool CJ and CN stars: ■  $(J - H) \le -3 \times (H - K) + 4.3$ 
  - Roughly criterion:  $(H K) \ge 0.35$  and  $(J H) \ge 1.0$



■ Hot carbon stars are distinguished from cool CJ and CN stars: ■  $(H-K) \le -0.6 \times (K-W1) + 0.5$ 



■ Hot carbon stars are distinguished from cool CJ and CN stars: ■  $(K-W1) \le -0.9 \times (W1-W2) + 0.3$ 



□ Hot carbon stars are distinguished from cool CJ and CN stars:
 □ (W1 - W2) ≤ 0.05 × (W2 - W3) + 0.03



#### Conclusion

- □ It is difficult to distinguish three type hot stars with colors we used.
- □ It is also difficult to distinguish cool CJ(N) and CN stars with colors we used.
- $\Box$  J H and H K are the best colors to distinguish cool and hot carbon stars.
- G-type and CR stars can be roughly isolated from nuv r and g r colors.
- G-type is the hottest stars, and is hotter than CR and Ba stars.
- Questions
  - What else can we do with these multiple-wavelength data ?



# Compared with Previous Work

□ ApJS, 2016, 226, 1 (894 carbon stars from LAMOST DR2)

- **5** stars with low quality spectra are not in our catalog
- Our 575 DR2 carbon stars not in this catalog
  - □ 122 are test targets
  - □ 453 are science targets

□ RAA, 2015, 15, 1671 (183 carbon stars from LAMOST Pilot Survey)

• 4 stars with low quality spectra are not in our catalog

| Step | Criteria                                                         | Abandoned carbon stars |  |
|------|------------------------------------------------------------------|------------------------|--|
| 1    | S/N(i) > 10 and leave only one epoch for multiply observed stars | 32                     |  |
| 2    | no radial velocitiy                                              | 25                     |  |
| 3    | Equations (2), (3), (4)                                          | 138                    |  |
| 3    | $CN7065 \ge 4 \text{ or } CN7820 \ge 8$                          | 113                    |  |
|      | CN7065 < 4 and $CN7820 < 8$ with $S/N(g) > 20$ and $S/N(i) > 20$ |                        |  |
| 4    | $CN7065 \ge 2$ and $C_2 \ge -13$                                 | 54                     |  |
| 5    | $K_s < 14.5 \text{ and } J - K_s > 0.45$                         | 41                     |  |
|      | 8888                                                             | i                      |  |



# Thank you for your attention !

