18-19th, Feb., 2017, 云南大学 云南.昆明

Understanding the formation and evolution of the Galactic disc(s) using Mono-Age Population Phase-spacE Distributions (MAPPED) analysis I: LAMOST-TGAS

Yang Huang (<u>vanghuang@pku.edu.cn</u>) Department of Astronomy Peking university

Collaborators:

X.-W. Liu (PKU), H.-B. Yuan (BNU), B.-Q. Chen (PKU), M.-S. Xiang (NAOC), H.-W. Zhang (PKU), J.-J. Ren (NAOC), Z.-J. Tian (PKU), C. Wang (PKU)

Outline

- Background
- LAMOST-TGAS MSTO-SG sample
- Study the Galactic disc(s) using Mono-Age Population
 Phase-space Distributions (MAPPED) analysis
- Summary & Future plan

Background

The Milky Way as a benchmark galaxy

Milky Way is the only galaxy that can be studied in great detail and a good understanding of its stellar populations is important for our understanding of galaxy formation in general

The Milky Way as a benchmark galaxy

Milky Way is the only galaxy that can be studied in great detail and a good understanding of its stellar populations is important for our understanding of galaxy formation in general

Properties	Thin disc	Thick disk
Scale height	Short	Large
Scale length	Large/short (count)	Short/large (count)
Metallicity	Iron-rich, low alpha	Iron-poor, high alpha
Metallicity gradient	Strong	Near flat
Velocity dispersion	Small	Large
Eccentricity	Small	Large
V-[Fe/H]	Negative	Positive
Age	Young	Old

Structure -

	Properties	Thin disc	Thick disk
Stanotan	Scale height	Short	Large
structure –	Scale length	Large/short (count)	Short/large (count)
	Metallicity	Iron-rich, low alpha	Iron-poor, high alpha
Chemistry –	Metallicity gradient	Strong	Near flat
	Velocity dispersion	Small	Large
Kinematics –	Eccentricity	Small	Large
Chemo- dynamics	V-[Fe/H]	Negative	Positive
Age –	Age	Young	Old

Most of the previous studies, the sample size they employed is quite limited (hundred to thousand). It is **too difficulty to** study all the above properties of Galactic discs **simultaneously**.

One fundamental question: all these properties consistent with each other for thin and thick discs?

One fundamental question: all these properties consistent with each other for thin and thick discs?

One fundamental question: all these properties consistent with each other for thin and thick discs?

Galactic discs: theoretical view

Chemical enrichment history Star formation history Gas flows

Galactic chemical evolution models (e.g. Chiappini et al. 1997, 2001)

"Inside out" and "Upside-down" (Stinson et al. 2013; Bird et al. 2013): Older stars form in a relatively thick component, or are kinematically heated very quickly after their birth. Younger populations form in successively thinner disks.

Dynamical effects: spatial distribution & kinematics & chemistry Major/Minor merge (e.g. satellite accretion; Abadi et al. 2003; Brook et al. 2004) Radial migration (e.g. Sellwood & Binney 2002; Schonrich & Binney 2009): disk flaring effect

Specially, for thick disc, at least 4 scenarios:

- Accretion and disruption of satellites (like in the stellar halo)
- Disk heating due to minor merger (also secular)
- Radial migration, via resonant scattering
- In-situ formation from thick gas disk (mergers, or clumpy galaxies)

Galactic discs: LAMOST plus Gaia

- LAMOST-TGAS → MSTO-SG: • Typical size: 500 pc • 6D phase space +
 - 6D phase space + abundance + age
 - ~ 0.1 million stars

Huang et al. in prep. 2017a

Galactic discs: LAMOST plus Gaia

Galactic discs: LAMOST plus Gaia

Huang et al. in prep. 2017b

Cross match LAMOST data (6 million, 2011.06-2016.06) to TGAS (2 million), we obtain 0.25 million common sources.

We further cut distance error smaller than 30% and select MSTO-SG in HR diagram. Finally, we get 0.1 million sources.

Using a similar method to Xiang et al. (2017), we have derived the age for those 0.1 million MSTO-SG stars using YY isochrones.

Below is the age distribution of our sample:

Study the Galactic disc(s) using Mono-Age Population Phase-spacE Distributions (MAPPED) analysis

MAPPED Analysis – Abundance

 $[Fe/H] - [\alpha/Fe]$

Age – [Fe/H]

Age – $[\alpha/Fe]$

MAPPED Analysis – Abundance

MAPPED Analysis – Abundance

 $[Fe/H] - [\alpha/Fe]$

Age – [Fe/H]

Age – $[\alpha/Fe]$

MAPPED Analysis – Abundance

MAPPED Analysis – Abundance

 $[Fe/H] - [\alpha/Fe]$

Age – [Fe/H]

Age – $[\alpha/Fe]$

 $R_{\rm g}(\rm kpc)$

Age (Gyr)

Age (Gyr)

Age (Gyr)

MAPPED Analysis – Spatial evolution of Abundance

MAPPED Analysis – Spatial evolution of Abundance

Eccentricity

Summary & Future plan

Summary

With a sample of nearly **0.1 million MSTO-SG stars** selected from LAMOST-TGAS, which have very accurate 3D positions + 3D velocities + orbital parameters (R_g , Z_{max} , eccentricity) + elements abundance ([Fe/H], [α /Fe]) + **age**, we have studied the Galactic disc(s) using **MAPPED analysis** and found the results listed below:

Properties	Thin disc (Age < 8 Gyr)	Thick disk (Age > 8 Gyr)
Scale length (indirect)	Large	Short
Abundance	Iron-rich, low alpha	Iron-poor, high alpha
Radial metallicity gradient	Negative	Near flat or slightly positive
AMR	flat	negative
Velocity dispersion & AVR	Lower & power law (~0.3)	Higher & power law (~0.8)
Eccentricity-[Fe/H]	Flat	Negative
Vphi-[Fe/H]	Negative	Positive
Age	Young	Old

Summary

With a sample of nearly **0.1 million MSTO-SG stars** selected from LAMOST-TGAS, which have very accurate 3D positions + 3D velocities + orbital parameters (R_g , Z_{max} , eccentricity) + elements abundance ([Fe/H], [α /Fe]) + **age**, we have studied the Galactic disc(s) using **MAPPED analysis** and found the results listed below:

Properties	Thin disc (Age < 8 Gyr)	Thick disk (Age > 8 Gyr)
Scale length (indirect)	Large	Short
Abundance	Iron-rich, low alpha	Iron-poor, high alpha
Radial metallicity gradient	Negative	Near flat or slightly positive
AMR	flat	negative
Velocity dispersion & AVR	Lower & power law (~0.3)	Higher & power law (~0.8)
Eccentricity-[Fe/H]	Flat	Negative
Vphi-[Fe/H]	Negative	Positive
Age	Young	Old

We do find two distinct discs: i.e. thin (< 8 Gyr) and thick (> 8 Gyr) discs, in multiple phase spaces.

Future plan

Huang et al. in prep. 2017b

Thank You!

LAMOST与银河 ©Jin Ma 2012 2012.08.22 Nikon D90 + 10-24mm, F3.5, 14x30s, ISO2500

WWW.KARAJIN.COM