Stellar LAbel Machine (SLAM)

A forward model of stellar labels based on Support Vector Regression

章傅, 刘超, 邓李才

Bo Zhang, Chao Liu, Li-Cai Deng

bozhang@nao.cas.cn

Code repository: https://github.com/hypergravity/slam (coming soon)

Current stellar label pipelines

- \diamond SSPP (Lee et al. 2008, \rightarrow SDSS, a number of methods)
- ♦ LASP (Ulyss, Wu et al. 2011, ELODIE→LAMOST)

$$Obs(\lambda) = P_n(\lambda) \times [TGM(T_{eff}, \log g, [Fe/H], \lambda) \otimes G(v_{sys}, \sigma)]$$

- ♦ LSP3 (interpolation, Xiang et al. 2015, →LAMOST)
- ♦ KPCA (Xiang et al. 2017, →LAMOST)

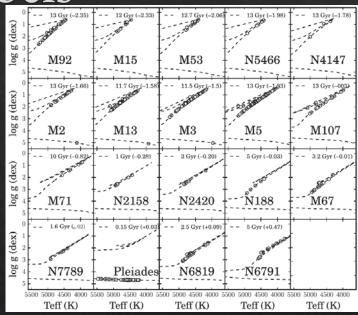
The concept of *Data-driven methods*

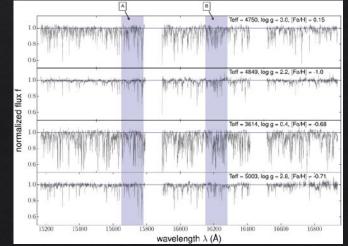
- ♦ TheCannon (Ness et al. 2015, APOGEE→APOGEE)
- ♦ TheCannon2 (Carsey et al. 2016, APOGEE → APOGEE)
- **⋄** ...

The Cannon: a Data-driven method to derive stellar labels

- ♦ A set of spectra with known stellar labels
- Pre-processing:
 - ♦ RV correction
 - ♦ Continuum normalization
 - Standardization for stellar labels
- Training:
 - ♦ Flux in each pixel is a function of stellar labels
- Prediction:
 - Predict stellar labels by maximizing likelihood

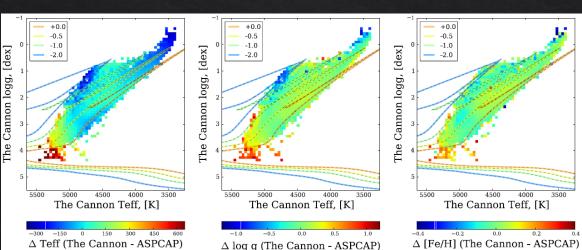
$$\ln p\left(f_{n\lambda}\left|\boldsymbol{\theta}_{\lambda}^{T}, \boldsymbol{\ell}_{n}, s_{\lambda}^{2}\right.\right) = -\frac{1}{2} \frac{\left[f_{n\lambda} - \boldsymbol{\theta}_{\lambda}^{T} \cdot \boldsymbol{\ell}_{n}\right]^{2}}{s_{\lambda}^{2} + \sigma_{n\lambda}^{2}} - \frac{1}{2} \ln\left(s_{\lambda}^{2} + \sigma_{n\lambda}^{2}\right).$$

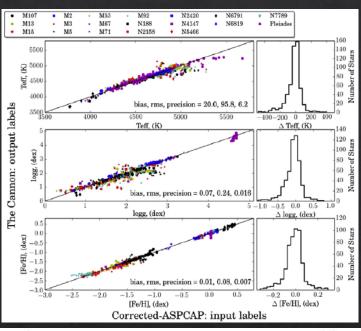


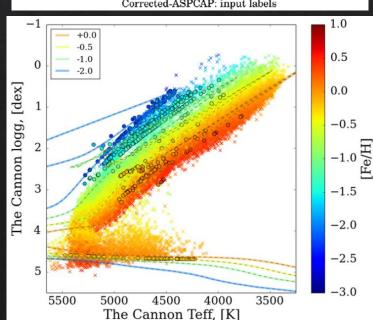


Performance: The Cannon

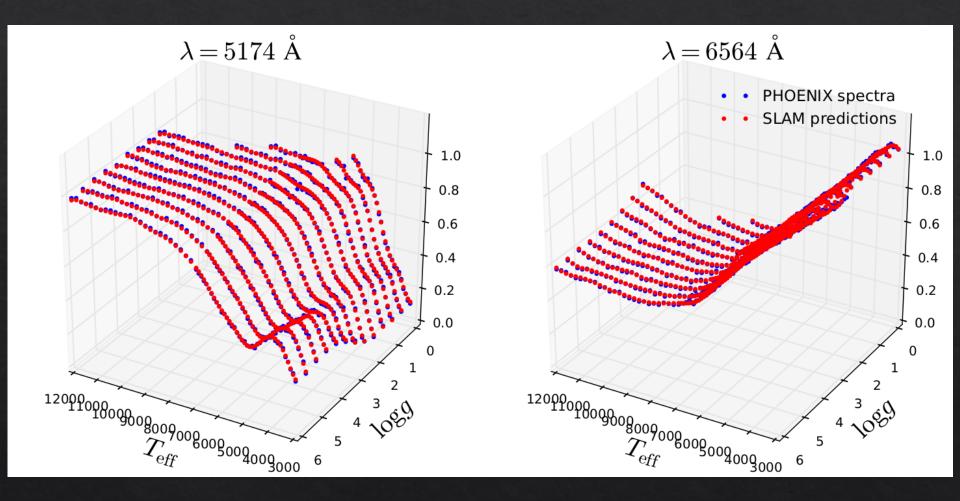
- \diamond δ [Teff, log g , [Fe/H]]
 - \Leftrightarrow [73 K, 0.18 dex, 0.11 dex] for highest S/N
 - \Rightarrow [100 K, 0.2 dex, 0.10 dex] for S/N~30–50
- \Leftrightarrow with an S/N of ≥ 25
 - ♦ Teff < 100 K
 - \diamond log g < 0.2 dex
 - \Rightarrow [Fe/H] < 0.1 dex







Quadratic model vs Non-parametric model



♦ Mgb & Ha center pixel trends ([Fe/H]=0.0)

TheCannon

SLAM

Training spectra

Training labels (Teff, log, [Fe/H...])

Training: linear regression

TheCannon (quadratic model coefs)

Prediction: optimization

Training spectra

Training labels (Teff, log, [Fe/H...])

Training spectra

Training labels (Teff, log, [Fe/H...])

Training: SVR regression

SLAM (support vectors + coefs)

Prediction:
Optimization/MCMC

Training spectra

Training labels (Teff, log, [Fe/H...])

$$\ln p\left(\boldsymbol{\theta}|f_{\text{obs}}\right) = -\frac{1}{2} \sum_{\lambda} \frac{|f_{\text{obs}}\left(\lambda\right) - f_{\text{SLAM}}\left(\lambda|\boldsymbol{\theta}\right)|^2}{\sigma_{\text{obs}}\left(\lambda\right)^2} - \frac{1}{2} \sum_{\lambda} \ln \sigma_{\text{obs}}\left(\lambda\right)^2$$

Support Vector Regression (SVR)

$$f(\mathbf{x}) = \sum_{i}^{\ell} \left\langle \left(\alpha_{i} - \alpha_{i}^{*} \right) \Phi(\mathbf{x}_{i}), \Phi(\mathbf{x}) \right\rangle + b, \tag{1}$$

minimize
$$\frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^{\ell} (\xi_i + \xi_i^*)$$
subject to
$$\begin{cases} y_i - \langle \mathbf{w}, \Phi(\mathbf{x}_i) \rangle - b \leqslant \epsilon + \xi_i \\ \langle \mathbf{w}, \Phi(\mathbf{x}_i) \rangle + b - y_i \leqslant \epsilon + \xi_i^* \\ \xi_i, \xi_i^* \geqslant 0 \end{cases}$$
 (2)

- \diamond An ϵ -robust non-parametric regression method
- Kernel
 - ♦ RBF, linear, ...
- Tuning parameters
 - \diamond C, ϵ , (gamma)
- To overcome overfitting
 - ♦ Cross-Validation + Grid/Random search

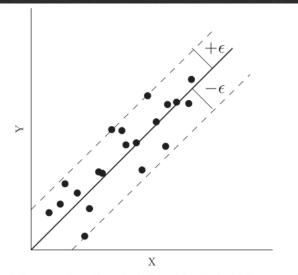
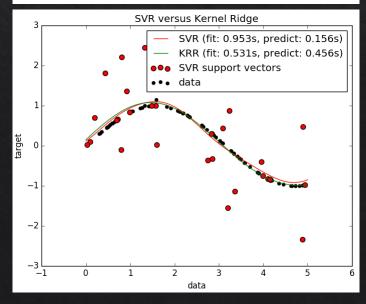
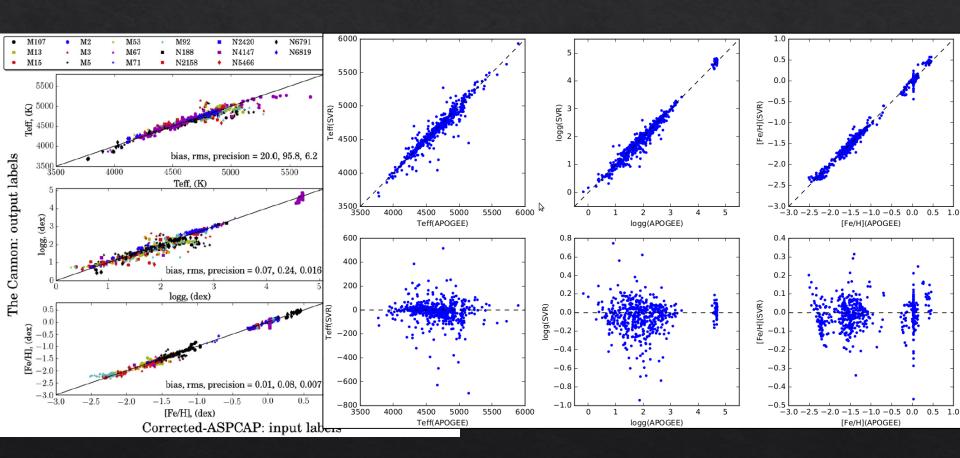


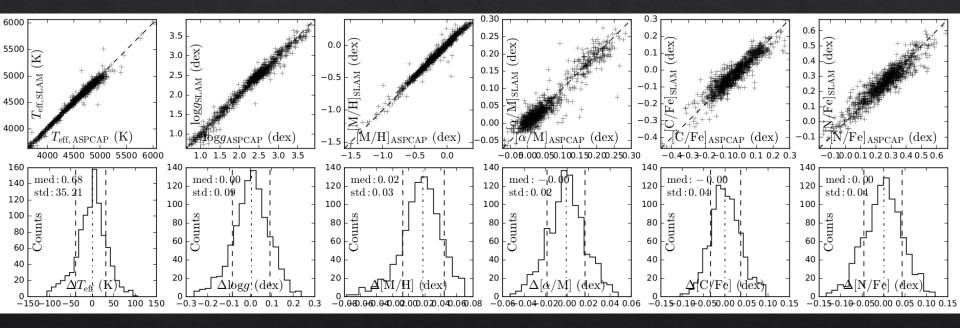
Figure 1. Demonstration of how the SVR model works in the linear case. The black dots are the mock data with arbitrary scales in x- and y-axes. The solid line stands for the SVR model, and the dashed lines show the tolerance of ϵ on each side of the linear model.



- ♦ GridSearch: search for the optimal set of hyper-parameters for each pixel (least MSE)
 - \diamond C = [2, 8], epsilon = [0.05, 0.10]
- Training error comparable with TheCannon (and maybe a little superior)



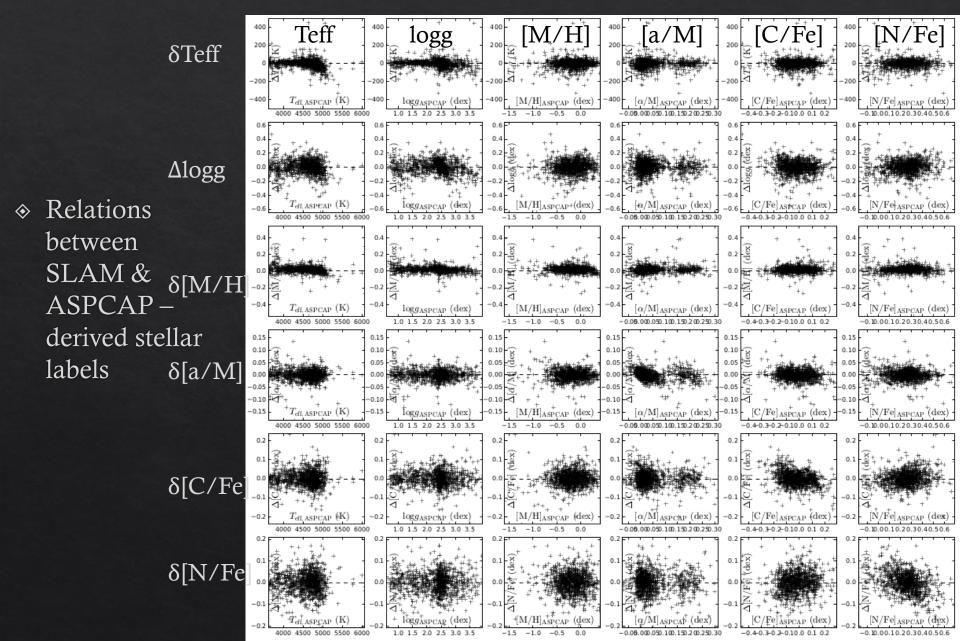
Relations between SLAM & ASPCAP –derived stellar labels



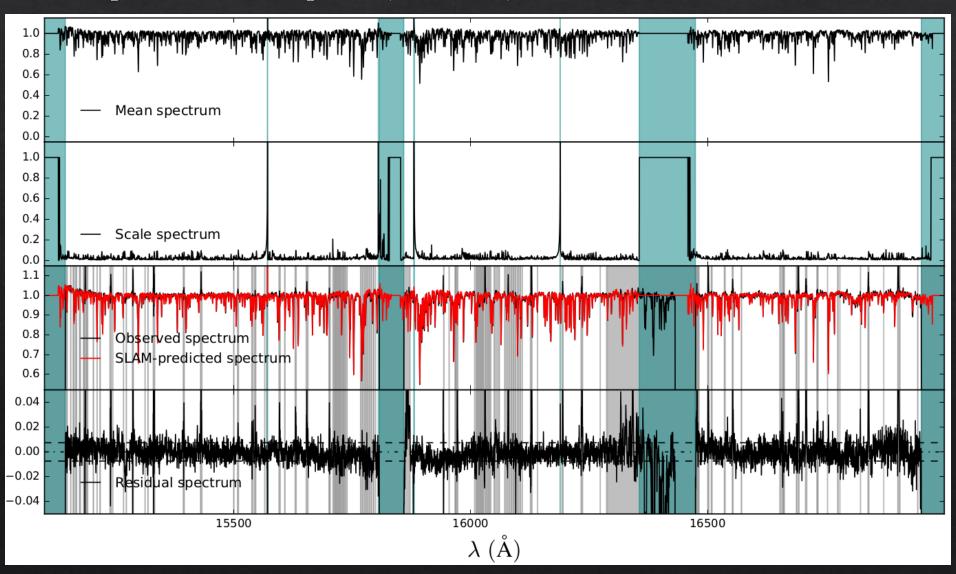
ΔTeff=35K

 $\Delta \log = 0.09$

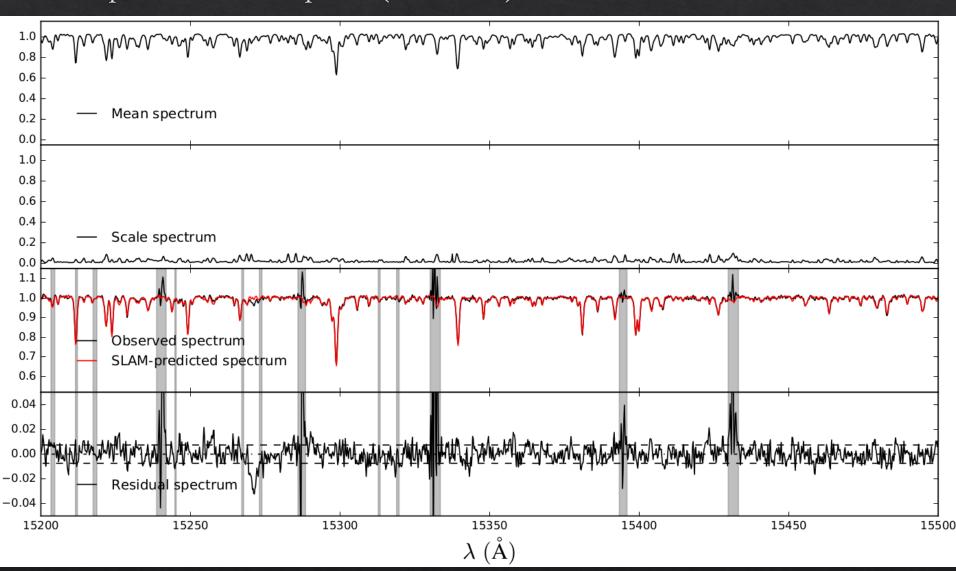
 $\Delta[M/H]=0.03 \ \Delta[a/M]=0.02 \ \Delta[C/Fe]=0.04 \ \Delta[N/Fe]=0.04$



♦ Example of Predicted spectra (APOGEE)



♦ Example of Predicted spectra (APOGEE)



♦ Relations between SLAM & ASPCAP –derived stellar labels

Table 1: Statistics of SLAM-derived stellar labels of test sample with different SNR.

SNR	parameter	$T_{ m eff}$	$\log g$	[M/H]	$[\alpha/\mathrm{M}]$	[C/Fe]	[N/Fe]
		(K)	(dex)	(dex)	(dex)	(dex)	(dex)
200 < SNR < 300	median	0.685	0.004	0.018	-0.001	-0.001	0.001
	STD	54.296	0.101	0.045	0.023	0.041	0.050
	MAD	21.871	0.056	0.023	0.011	0.023	0.030
100 < SNR < 200	median	-14.141	0.017	0.013	-0.000	-0.007	0.005
	STD	64.307	0.130	0.056	0.026	0.046	0.066
	MAD	31.335	0.071	0.024	0.014	0.025	0.032
60 < SNR < 100	median	-22.499	-0.009	0.008	-0.002	-0.017	0.007
	STD	88.372	0.187	0.067	0.031	0.064	0.076
	MAD	42.975	0.098	0.030	0.019	0.035	0.041
20 < SNR < 60	median	-31.845	-0.063	-0.004	-0.002	-0.017	0.001
	STD	91.737	0.210	0.068	0.033	0.067	0.087
	MAD	52.962	0.115	0.034	0.020	0.036	0.047

The performance of TheCarnon: Ness et al. (2015):

 δ [Teff, log g , [Fe/H]]

[73 K, 0.18 dex, 0.11 dex] for highest S/N [100 K, 0.2 dex, 0.10 dex] for S/N~30–50

TODOs

- ♦ Training on LAMOST spectra + LASP/improved stellar labels to provide self-consistent/better stellar labels for LAMOST spectra
- ♦ Transfer APOGEE stellar labels to LAMOST (RG stars)
- ♦ Provide stellar label estimations for LAMOST II (more element abundances)

Thank you